Ju n 20 04 UNIVERSAL ADAPTIVE ESTIMATIONS AND CONFIDENCE INTERVALS IN THE NONPARAMETRIC STATISTICS

نویسندگان

  • Ostrovsky
  • Sirota
چکیده

The paper considers so-called adaptive estimations of regression, distribution density and spectral density of a Gaussian stationary sequence, asymp-totically optimal in order at a growing number of observation on any regular sub-space compactly embedded in space L 2 , and confidence intervals, also adaptive, are constructed on their basis for the estimated functions in an integral norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing confidence intervals for log-concave densities

Log-concave density estimation is considered as an alternative for kernel density estimations which does not depend on tuning parameters. Pointwise asymptotic theory has been already developed for the nonparametric maximum likelihood estimator of a log-concave density. Here, the practical aspects of this theory are studied. In order to obtain a confidence interval, estimators of the constants a...

متن کامل

Cauchy Regression and Confidence Intervals for the Slope

This paper uses computer simulations to verify several features of the Greatest Deviation (GD) nonparametric correlation coefficient. First, its asymptotic distribution is used in a simple linear regression setting where both variables are bivariate. Second, the distribution free property of GD is demonstrated using both the bivariate normal and bivariate Cauchy distributions. Third, the robust...

متن کامل

برآورد فاصله اطمینان برای نسبت‌های نزدیک به صفر و یک: یک مطالعه ثانویه مدل سازی

Background and Objectives: When computing a confidence interval for a binomial proportion p, one must choose an exact interval that has a coverage probability of at least 1-α for all values of p. In this study, we compared the confidence intervals of Clopper-Pearson, Wald, Wilson, and double ArcSin transformation in terms of maintaining a constant nominal type I error. Methods: Simulations w...

متن کامل

بکارگیری روش باز نمونه گیری بوت استرپ در رگرسیون لجستیک و کاربرد آن در تحلیل داده های مربوط به بیماران مبتلا به سرطان سینه

Background and Aim: The purpose of this study was to assess the accuracy of the bootstrap method in logistic regression and to explore the method's use in logistic regression models in cases where the sample size is insufficient. Materials and Methods: We use data from 150 patients who had undergone surgery at the Cancer Institute, Emam Khomeini hospital during from 1999 to 2001. Then we drew...

متن کامل

Random Weighting Estimation of One-sided Confidence Intervals in Discrete Distributions

This paper presents a new random weighting method for estimation of one-sided confidence intervals in discrete distributions. It establishes random weighting estimations for the Wald and Score intervals. Based on this, a theorem of coverage probability is rigorously proved by using the Edgeworth expansion for random weighting estimation of the Wald interval. Experimental results demonstrate tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004